Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.
نویسندگان
چکیده
Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.
منابع مشابه
Cost and performance analysis of an integrated solar combined cycle with two tanks for indirect thermal energy storage
In this paper, the annual and economic performance of an integrated solar combined cycle (ISCC) with indirect energy storage tanks is investigated. The study includes four scenarios, in which the combined cycle performance was studied exclusively in the first scenario. In the second scenario, the integrated solar combined cycle (ISCC) was examined, and the use of supplementary firing instead of...
متن کاملAzobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.
Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy dens...
متن کاملOptimization of the PCM-integrated solar domestic hot water system under different thermal stratification conditions
Many researchers have investigated how to increase the overall efficiency of solar-driven thermal systems. Several key parameters, such as collector efficiency and storage tank characteristics, may impose some constraints on the annual solar fraction (ASF) of such systems. In this paper, the behaviour of integrating the phase change material (PCM) in SDHW systems is modelled and optimized n...
متن کاملOptimization of the PCM-integrated solar domestic hot water system under different thermal stratification conditions
Many researchers have investigated how to increase the overall efficiency of solar-driven thermal systems. Several key parameters, such as collector efficiency and storage tank characteristics, may impose some constraints on the annual solar fraction (ASF) of such systems. In this paper, the behaviour of integrating the phase change material (PCM) in SDHW systems is modelled and optimized n...
متن کاملOptimization of Solar Absorption Cooling System Considering Hourly Analysis
Thermal modelling and optimal design of a solar absorption cooling system are presented, and hourly analysis is performed over the period of a year. Three design parameters are considered, then the Real Parameter Genetic Algorithm (RPGA) is applied to obtain the minimum total annual cost. The optimization results show that the solar cooling optimum configuration needs 1630 square meter collecto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature chemistry
دوره 6 5 شماره
صفحات -
تاریخ انتشار 2014